Skip to content

Publications

Optimal virtual sensing for active noise control in a rigid-walled acoustic duct

Optimal virtual sensing for active noise control in a rigid-walled acoustic duct

Cornelis D. Petersen, Anthony C. Zander, Ben S. Cazzolato, Colin H. Hansen (2005)

The Journal of the Acoustical Society of America, 118 (5), November, p3086-3093

Abstract:

The performance of local active noise control systems is generally limited by the small sizes of the zones of quiet created at the error sensors. This is often exacerbated by the fact that the error sensors can not always be located close to an observer's ears. Virtual sensing is a method which can move the zone of quiet away from the physical location of the transducers to a desired location, such as an observer’s ear. In this article, analytical expressions are derived for optimal virtual sensing in a rigid-walled acoustic duct with arbitrary termination conditions. The expressions are derived for tonal excitations, and are obtained by employing a travelling wave model of a rigid-walled acoustic duct. It is shown that the optimal solution for the virtual sensing microphone weights is independent of the source location and microphone locations. It is also shown that, theoretically, it is possible to obtain infinite reductions at the virtual location. The analytical expressions are compared with forward difference prediction techniques. The results demonstrate that the maximum attenuation, which theoretically can be obtained at the virtual location using forward difference prediction techniques, is expected to decrease for higher excitation frequencies and larger virtual distances.

This material is now only available to staff and students of the University of Adelaide.
Should you wish to receive a copy, please contact the AVC Group webmaster.
Note that if this article is under review, then it cannot be released and email requests will not be answered.

Published Document - NOT available for public access
Manuscript - available for public access

 

Acoustics Vibration and Control Research Group
Address

THE UNIVERSITY OF ADELAIDE
SA 5005 AUSTRALIA

Contact

T: +61 8 8313 5460
F: +61 8 8313 4367
email