Skip to content

Publications

Prediction of noise from a wing-in-junction flow using computational fluid dynamics

Prediction of noise from a wing-in-junction flow using computational fluid dynamics

Con J. Doolan, Jesse L. Coombs, Danielle J. Moreau, Anthony C. Zander, Laura A. Brooks (2012)

Proceedings of Acoustics 2012, Fremantle, Western Australia, Australia, 21 - 23 November

Abstract:

The leading edge turbulence interaction noise model of Amiet was extended to incorporate span-wise variations in flow properties and integration with modern computational fluid dynamics codes. The present implementation of the leading edge noise model was validated against experimental data in the literature. To demonstrate the use of the extended leading edge noise model, the flow and noise from a wing-in-junction test case was simulated numerically. Noise was calculated using flow data from different upstream positions to illustrate the importance of choosing the most appropriate turbulence data for noise prediction. The effect of span-wise discretisation on the acoustic prediction was shown and a study of the noise contributions from each span-wise part of the wing was performed. This showed that the upper part of the wing produced the most noise. Thus, any noise mitigation strategies should be concentrated in this area for maximum effect.

This material is now only available to staff and students of the University of Adelaide.
Should you wish to receive a copy, please contact the AVC Group webmaster.
Note that if this article is under review, then it cannot be released and email requests will not be answered.

Published Document - NOT available for public access

 

Acoustics Vibration and Control Research Group
Address

THE UNIVERSITY OF ADELAIDE
SA 5005 AUSTRALIA

Contact

T: +61 8 8313 5460
F: +61 8 8313 4367
email