Skip to content

Publications

Hopf Bifurcation of a Magnetic Bearing System with Time Delay

Hopf Bifurcation of a Magnetic Bearing System with Time Delay

J.C. Ji, Colin H. Hansen (2005)

Journal of Vibration and Acoustics, 127 (4), August, p362-369

Abstract:

This paper is concerned with a study of the influence of a time delay occurring in a PD feedback control on the dynamic stability of a rotor suspended by magnetic bearings. In the presence of geometric coordinate coupling and time delay, the equations of motion governing the response of the rotor are a set of two-degree-of-freedom nonlinear differential equations with time delay coupling in nonlinear terms. It is found that as the time delay increases beyond a critical value, the equilibrium position of the rotor motion becomes unstable and may bifurcate into two qualitatively different kinds of periodic motion. The resultant Hopf bifurcation is associated with two coincident pairs of complex conjugate eigenvalues crossing the imaginary axis. Based on the reduction of the infinite dimensional problem to the flow on a four-dimensional center manifold, the bifurcating periodic solutions are investigated using a perturbation method.

This material is now only available to staff and students of the University of Adelaide.
Should you wish to receive a copy, please contact the AVC Group webmaster.
Note that if this article is under review, then it cannot be released and email requests will not be answered.

Published Document - NOT available for public access

 

Acoustics Vibration and Control Research Group
Address

THE UNIVERSITY OF ADELAIDE
SA 5005 AUSTRALIA

Contact

T: +61 8 8313 5460
F: +61 8 8313 4367
email